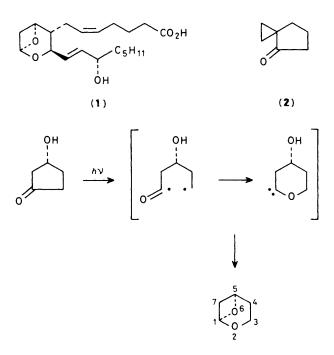
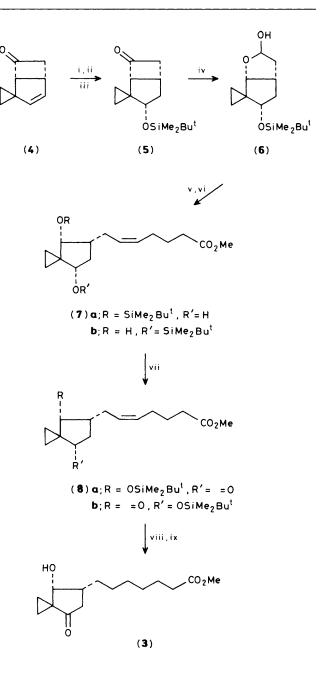
A Photochemical Synthesis of a Thromboxane A₂ Analogue *via* Intramolecular Trapping of an Oxacarbene by an Hydroxy Group

Stephen W. Jones,^a **Feodor Scheinmann**,^a **Basil J. Wakefield**,^a **David Middlemiss**,^b **and Roger F. Newton***^b ^a The Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5

4WT, U.K. ^b Chemistry Division, Glaxo Group Research Ltd., Ware, Herts SG12 0DJ, U.K.

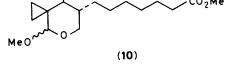

A spiro substituted 2,6-dioxabicyclo[3.1.1]heptane (the thromboxane A_2 ring system) has been prepared by intramolecular trapping of a photochemically generated oxacarbene.

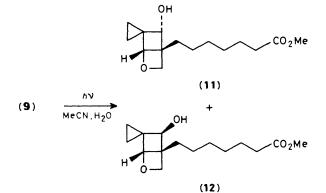

The 2,6-dioxabicyclo[3.1.1]heptane ring system of thromboxane A_2 (1) is very labile under acidic and mildly basic conditions.¹ The recent syntheses of this ring system² and of thromboxane A_2 itself³ have overcome this problem by using the more stable 7-heterosubstituted dioxabicycloheptanes and removing the heteroatoms at a late stage. An alternative and novel strategy would be to trap a photochemically generated oxacarbene intramolecularly by an hydroxy group (Scheme 1).

Since, unlike cyclobutanones, unsubstituted cyclopentanones do not undergo photochemically induced ring expansion⁴ the unusual photochemical behaviour of the spiro cyclopentanone system (2) was utilised.⁵ The required model compound (3) was synthesised from the corresponding bicyclo[3.2.0]heptanone (4)⁶ as shown in Scheme 2.

Photolysis of the derived ketone (5) in aqueous acetonitrile⁷ afforded the lactol (6) which was subjected to a Wittig reaction and esterification. Under the conditions of the Wittig reaction silyl migration occurred⁸ to give a mixture of alcohols (7a) and (7b). Oxidation produced the ketones (8a) and (8b) which were separated by chromatography. Deprotection and reduction of (8a) then afforded the required model compound (3).

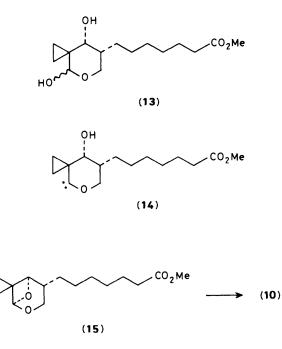
Photolysis of (3) in dry methanol using a 125 W medium pressure mercury arc and quartz apparatus gave as the major products the unsaturated aldehyde (9) and the hydroxy acetal




Scheme 2. Reagents: i, N-bromo-acetamide (NBA), H₂O, Me₂CO; ii, Bu₃SnH, azoisobutyronitrile (AIBN); iii, Bu⁴Me₂SiCl, imidazole, dimethylformamide (DMF); iv, hv, MeCN, H₂O; v, BrPh₃P(CH₂)₄CO₂H, KOBu^t, tetrahydrofuran (THF); vi, CH₂N₂; vii, pyridinium chlorochromate (PCC), NaOAc, CH₂Cl₂ then chromatography; viii, HF, H₂O, MeCN; ix, Pt, H₂.

Scheme 1

ΟН



Scheme 3

(10) which were isolated chromatographically in yields of 27% and 17% and fully characterised.[†]

The oxetanes (11) and (12) were identified as minor products and in a separate experiment (Scheme 3) shown to arise by an intramolecular cycloaddition reaction of the initially formed aldehyde (9), which itself is presumably formed by rearrangement of a diradical intermediate (*cf.* Scheme 1). Photolysis of (3) in aqueous acetonitrile solvent gave the unsaturated aldehyde (9) and the lactol (13). The formation of (10) and (13) clearly indicated that the required oxacarbene intermediate (14) was being generated and trapped by the methanol and water respectively.

Photolysis of the ketone (3) in dry acetonitrile and quenching the reaction with methanol up to four hours after the photolysis period gave the acetal (10) (25%) and the lactol

(13) (3%) as well as (9), (11), (12) (32%). We conclude that in the absence of an external nucleophile the photogenerated oxacarbene (14) is trapped intramolecularly by the pendant hydroxy group⁹ to give the 2,6-dioxabicyclo[3.1.1]heptane (15) which is stable in acetonitrile but which suffers rapid methanolysis to give (10) under non-photolytic conditions. Although our evidence for the formation of the thromboxane A_2 analogue (15) is strong, we have not succeeded in isolating it; presumably the additional ring strain arising from the spirocyclopropyl group makes it even less stable than thromboxane A_2 itself.

We thank S.E.R.C. for a CASE award to S. W. J., and S. M. Roberts for valuable discussions.

Received, 21st April 1986; Com. 521

References

- 1 M. Hamserg, J. Svensson, and B. Samuelsson, Proc. Natl. Acad. Sci. USA, 1975, 72, 2994.
- 2 S. S. Bhagwat, P. R. Hamann, and W. C. Still, *Tetrahedron Lett.*, 1985, 1955; J. Fried, E. A. Hallinan, and M. J. Szwedo, J. Am. Chem. Soc., 1984, **106**, 3872.
- 3 S. S. Bhagwat, P. R. Hamann, and W. C. Still, J. Am. Chem. Soc., 1985, 107, 6372.
- 4 P. Yates and R. O. Loutfy, Acc. Chem. Res., 1975, 8, 209.
- 5 D. R. Morton, E. Lee-Ruff, R. M. Southam, and N. J. Turro, J. Am. Chem. Soc., 1970, 92, 4349.
- 6 K. Jarowicki and T. Jaworski, Monatsh. Chem., 1984, 115, 605.
- 7 N. M. Crossland, D. R. Kelly, S. M. Roberts, D. P. Reynolds, and R. F. Newton, J. Chem. Soc., Chem. Commun., 1979, 682.
- 8 C. Howard, R. F. Newton, D. P. Reynolds, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1981, 2049.
- 9 M. Pirrung, Angew. Chem., Int. Ed. Engl., 1985, 24, 1043; H. G. Davies, S. M. Roberts, B. J. Wakefield, and J. A. Winders, J. Chem. Soc., Chem. Commun., 1985, 1166, and references therein.

[†] Compound (10). Isomer *cis* 9-OH, 11-OMe: $\delta_{\rm H}$ (250.13 MHz, CDCl₃) 1.90 (1H, m, H-8), 2.29 (2H, t, H-2), 2.89 (1H, br.d, H-9), 3.23 (1H, d, OH), 3.36 (3H, s, C-11-OMe), 3.52 (1H, dd, H-13), 3.67 (s, COOMe), 3.72 (t, H-13), 3.84 (1H, s, H-11); $\delta_{\rm C}$ (62.9 MHz, CDCl₃) 8.4 and 10.1 (C-14 and C-15), 25.4 (C-10), 39.9 (C-8), 51.3 (COOMe), 55.1 (C-11-OMe), 59.3 (C-13), 74.2 (C-9), 105.5 (C-11), 174.1 (C-1).

Isomer trans 9-OH, 11-OMe: $\delta_{\rm H}$ 3.41 (s, C-11-OMe), 4.65 (s, H-11); $\delta_{\rm C}$ 5.5 and 7.0 (C-14 and C-15), 26.7 (C-10), 40.8 (C-8), 56.4 (C-11-OMe), 64.9 (C-13), 74.5 (C-9), 101.0 (C-11).